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In this Rapid Communication we present an analytic study of sampled networks in the case of some
important shortest-path sampling models. We present analytic formulas for the probability of edge discovery in
the case of an evolving and a static network model. We also show that the number of discovered edges in a
finite network scales much more slowly than predicted by earlier mean-field models. Finally, we calculate the
degree distribution of sampled networks and we demonstrate that they are analogous to a destroyed network
obtained by randomly removing edges from the original network.
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Complex networks have attracted significant interest in
recent years �1,2�. In most cases, the entire structure of the
network is unknown and one is left with statistical samples
of the original network �3,4�. The sampling of Internet topol-
ogy is one of the greatest challenges due to its enormous size
and decentralized structure. It motivated numerous studies
on the relationship between the original and the sampled
network, including the degree distribution �5–7� and the ex-
pected size of the network �8�. Recently, Internet sampling
methods have emerged that rely on the measurement tool
traceroute, which returns the sequence of IP addresses of the
network nodes along the path between the measurement host
and a given destination host. An abstraction of the network
discovery process consists of selecting a set of source and
target nodes and finding the shortest paths between source
and destination pairs. A node or an edge of the network is
discovered if it belongs to one of those shortest paths. The
statistical properties of the discovered network have been
studied extensively by Dall’ Asta et al. �9�. The mean-field
approximation has been developed in the limit of low source
and target density �S�T�1 by neglecting the correlation of
different shortest paths.

In this Rapid Communication we present exact results for
certain networks. A surprising finding is that the network
discovery process is slower in these systems than it is pre-
dicted by the mean-field theory. While in mean-field approxi-
mation the number of discovered links scales with the prod-
uct of the number of the source and target nodes, our
approach predicts a scaling only with their sum. The lower
number of discovered edges is a result of the high degree of
overlapping between shortest paths. Our other important
finding concerns the degree distribution of the discovered
network. We will show that it is analogous with a destroyed
network where a fraction of the edges of the original network
has been randomly removed.

We investigate two main discovery strategies. In peer-to-
peer �P2P� sampling each node is selected simultaneously for
both source and target with probability �. Computer applica-
tions using the peer-to-peer principle discover the network

this way, hence the name. In disjunct �DI� sampling each
node is selected for source or target but not for both with
probabilities �S and �T. This strategy is used in Internet map-
ping projects, where source computers belong to the mea-
surement infrastructure, while a large number of random ad-
dresses are selected as targets.

We start our analysis with the discovery of a tree. The
most important observation permitting exact calculations in
this case is that an edge separates the tree into two sides. An
edge is discovered only if the source and the target nodes
reside on different sides of the edge. Let us denote the event
that a node is selected as a source or target by S and T,
respectively. Furthermore, we denote the event that at least
one source or target node resides on the “left” or “right” side
of the edge by SL,R and TL,R, respectively. The event that a
link is discovered, D, provided that its two sides L and R are
known, is clearly D= �SLTR�+ �SRTL�. Therefore, we can ex-
press the conditional probability

P�D�L,R� = P�SL�L,R�P�TR�L,R� + P�SR�L,R�P�TL�L,R�

− P�SLTL�L,R�P�SRTR�L,R� .

The probabilities arising in this expression can be calculated

easily: P�S� �L ,R�=1− PN��S̄�, P�T� �L ,R�=1− PN��T̄� and

P�S�T� �L ,R�=1− PN��S̄�− PN��T̄�+ PN��S̄T̄�, where �=L or
R, NL and NR are the number of nodes on the two sides of the
link, and the overlines denote complement events.

Let us consider an evolving network where each new
node is attached randomly to one of the nodes of the existing
network. The structure of this network will be a tree. Since
the network is connected the cluster sizes NL and NR must
satisfy the relation NL+NR=N, where N is the size of the
whole network. In the thermodynamic limit N→� we obtain

P�D �NL�=1−�NL, where we have introduced �= P�S̄T̄�. The
probability � in the different sampling models is related to
the source and target densities in a simple way:

� = �1 − � P2P

1 − �S − �T DI,
� �1�

where � ,�S ,�T� �0,1�, �S+�T�1. If �S+�T�1 in the
DI sampling model, then we can write P�D �NL�
�1−exp�−

�S+�T
N be�, where be=NL�N−NL� is the number of

shortest paths that traverse a given link called betweenness
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centrality. Compare this result with the mean-field model of
Dall’ Asta et al. �9�: P�Dmf �be��1−exp�−�S�Tbe�.

The probability of finding an arbitrary edge by traceroute
probes can be given now straightforwardly:

�d = 	
NL=0

�

P�D�NL�P�NL� = 1 − H1��� , �2�

where H1�z�=	NL
P�NL�zNL is the generating function of the

cluster size distribution P�NL�.
Expression �2� has been tested on the Dorogovtsev-

Mendez �DM� network growth model �10�, a generalization
of the Barabási-Albert �BA� model �11�, where new nodes
with m new links are attached to old nodes with degree-
dependent probability ��ki�=

ki−m+am

	i�ki−m+am� , where a	0. The
growing tree corresponds to m=1. We calculated the distri-
bution P�NL� for this model analytically in Ref. �12�. The
generating function can be expressed in terms of hypergeo-
metric functions H1�z�=z2F1�1−
 ,1 ,2−
 ;z�−z 1−


2−
 2F1�2
−
 ,1 ,3−
 ;z� and 
= 1

1+a . At a=1 we recover the original
BA preferential attachment model with scale-free degree dis-
tribution and at a=+� we obtain uniform attachment prob-
ability with exponential degree distribution. In these cases �d
can be expressed with elementary functions

�d = 
−
1 − �

�
ln�1 − �� if a = + ��i.e., 
 = 0� ,

1 − �

2��
ln

1 + ��

1 − ��
if a = 1�i.e., 
 = 1/2� . � �3�

Figure 1 shows simulations for the P2P sampling model at

=0 and 1/2. The analytic results �3�, plotted with dashed
lines, fit the simulation data excellently.

From the point of view of the efficiency of the discovery
process, it is important to calculate how many edges can be
discovered with a given number of source nS and target
nodes nT. For the Internet discovery the disjunct sampling
model is relevant, where �T+�S= �nT+nS� /N=n /N=1−�
�1. The series expansion of Eq. �2� yields �d=1
−	NL

P�NL��1− n
N �NL. We can rearrange the series by adding

and subtracting the terms 1−n
NL

N and averaging them sepa-
rately �d=

nNL�
N −	NL

P�NL���1− n
N �NL −1+n

NL

N �.
Several authors have pointed out that the distribution of

be=NL�N−NL� follows a universal power-law tail in trees
with exponent −2 �12–14�. It also implies that asymptotically
P�NL��cNL

−2 in an arbitrary tree for NL�1. Specifically, c
=1−
 in the DM model. Using this asymptotic form we can
calculate the leading behavior in the N→� limit �d=

nNL�
N

−cLi2�1−n /N�+c �2

6 −c n
N �ln N−��, where Li2�x� is the

dilogarithm function and ��0.5772 is the Euler constant.
For small argument Li2�1−x� can be expanded by using Eu-
ler’s reflection formula Li2�1−x�=−Li2�x�+ �2

6 − ln�x�ln�1
−x��−x+ �2

6 +x ln�x�+¯. Finally we get �d=
nNL�

N +c n
N

−c n
N ln n−c n

N�.
To process this further, let us express the term NL� more

straightforwardly. The sum of be for all edges clearly equals
the total length of the shortest paths between all possible
pairings of nodes: 	e�Ebe=	i,j�Vli,j. Since b�= 1

N−1	e�Ebe

and l�= 2
N�N−1�	i,j�Vli,j we can write l�N /2= b�. Therefore,

the average branch size can be given as NL�= l� /2
+ NL

2� /N, where NL
2� /N= 1

N	NL=1
N c

NL
2 NL

2 =c. For a large, but
finite network the average number of discovered edges is
nd�= �N−1��d, that is

nd� � n� l�
2

− c ln n + 2c − c�� �4�

in the limit 1�n=nS+nT�N, The above result shows that
nd� depends on the sum of nS and nT. This is in contrast to
the mean-field model, which predicts that nd� scales with the
product of nS and nT. The logarithmic term of Eq. �4� ac-
counts for the possibility that a new measurement node is
placed at a node discovered by previous measurement nodes.
The inset of Fig. 1 displays simulation results and the for-
mula corresponding to the P2P sampling.

We continue with the analysis of a static model where
nodes are randomly connected with a prescribed degree dis-
tribution pk. This “configuration model” is a generalization
of the Erdős-Rényi �ER� model �15�, where the degree dis-
tribution is Poissonian. It has been shown in �16� that the
generating function of branch sizes H1�z� satisfies the im-
plicit equation H1�z�=zG0��H1�z�� / k�, where G0�z�=	kpkz

k

is the generating function of the degree distribution. In the
configuration model loops become irrelevant in the thermo-
dynamic limit N→+� and each edge is a part of a tree. Here,
NL and NR are independent and the joint probability function
has a product form P�NL ,NR�= P�NL�P�NR�. The summation
in �d can be carried out separately for NL and NR, which
yields
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FIG. 1. �Color online� Discovery probability of edges �d��� as
the function of the measurement node density � for P2P sampling of
evolving trees. Data points are averaged over 100 realizations of
N=104 node BA trees with 
=0 and 1/2. Solid lines show the
corresponding analytic solution �3� with �=1−�. Inset: the number
of discovered edges nd as the function of the number of the mea-
surement nodes n. The solid line represents Eq. �4�, whereas the
dotted line shows its leading term l�n /2 with l�=15.48 and 9.045
for 
=0 and 1/2, respectively.
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�d = 2�1 − H1�P�S̄����1 − H1�P�T̄���

− �1 − H1�P�S̄�� − H1�P�T̄�� + H1�P�S̄T̄���2. �5�

In the case of P2P discovery this can be reduced to

�d = �1 − H1�1 − ���2. �6�

This formula can be tested on the ER model, with G0�z�
=ek��z−1�. The cluster size distribution can be given by the
Lambert W function H1�z�=−W�−k�e−k�z� / k�. Simulation
results are presented in Fig. 2�a�. The analytic result �6� is
also shown for comparison. One can see that it is discontinu-
ous at zero density if k�1, when a giant component
emerges in the network. The simulation data deviate from the
analytic solution around the discontinuity due to finite-scale
effects. The size of the jump is P0= �1−H1�1��2, which is
precisely the probability of infinitely large branches being
attached to both sides of an edge. If P0 is regarded as an
order parameter, the observed phenomenon resembles a
phase transition at k�=kc=1.

We also generated networks with power-law degree dis-
tribution using the hidden-variable model introduced in
�17–20�. Simulations are shown in Fig. 2�b� with degree ex-
ponent �=3. Note that the analytic solution is discontinuous
at zero density, i.e., P00, for all k�0. The phase transi-
tion can be observed again, since the analytic solution—and
P0—is independent of k� below a critical point kc���
= ���−1�

���� . Indeed, data points almost collapse at k�=0.5 and 1
which are below kc��=3��1.3684. The phenomenon occurs
when the degree generating function G0��z� depends linearly
on k�. This is characteristic of pure power-law distributions
until k� is below the critical value kc.

Now we turn our attention to the degree distribution
Pd�k�� of the discovered nodes. In our analysis we consider
only the contribution of those shortest paths to k�, which
traverse a given node. We will show that Pd�k�� is analogous

to the degree distribution of a partially severed network ob-
tained by random edge pruning �21,22�. This duality between
the sampling and the destruction of networks is very surpris-
ing considering the striking differences between the two pro-
cesses, e.g., the explored network is surely connected in con-
trast to the destroyed one.

Let us consider a node v with original degree k. If every
link is removed independently with probability p, then k�,
the degree of the node after random edge removal, will fol-
low a binomial distribution: P�k� �k�= � k

k�
��1− p�k�pk−k�. Con-

sequently,

Ppruned�k�� = 	
k=k�

� � k

k�
��1 − p�k�pk−k�P0�k� . �7�

Regarding the sampling process we examine a randomly
selected node of the discovered network v�Vd in the static
model first. Let us suppose that the sizes of the branches with
original degree k are N1 ,N2 , . . . ,Nk �see Fig. 3�. For the sake
of simplicity we discuss only the P2P sampling model, where
the probability of placing a measurement node in branch i is
simply �1−�Ni�. Since branch sizes are independent we can
average over Ni separately. The results we obtain indicate
that measurement nodes can be found in different branches
with probability 1−H1���.

We can see from Fig. 3 that the degree of a discovered
node k� equals the number of branches where measurement
nodes can be found in. It follows that Pd�k� �k�
= 1

P�v�Vd�k� �
k
k�

��1−H1����k�H1
k−k����, where 2�k��k. The

subscript of Pd refers to the probability distribution restricted
to the discovered network. In order to obtain the distribution
of k� one should average this probability over Pd�k�, the
distribution of the original degrees of the discovered nodes.
This distribution can be obtained by Pd�k�=

P�v�Vd�k�P0�k�
P�v�Vd� , so

Pd�k�� =

	
k=k�

� � k

k�
��1 − H1����k�H1

k−k����P0�k�

P�v � Vd�
, �8�

where k�	2 and P�v�Vd�=1−G0�H1����− �1
−H1����G0��H1����. It is evident from Eqs. �7� and �8� that
Pd�k�� equals Ppruned�k��—normalized properly for k�	2—if
p=H1���. In other words the discovered network is equiva-
lent with an edge destroyed one.

In the case of an evolving network at least one of the
branches, say Nk, tends to infinity as N→�, so the probabil-
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FIG. 2. �Color online� Discovery probability of edges as the
function of the measurement node density � for static �a� Poissonian
and �b� power-law networks. 100 P2P samplings were averaged in
N=104 size networks with average degrees k�=0.5, 1, 2, and 4.
Solid lines show analytic formula �6�. Note that the analytic results
for k�=0.5 and 1 are the same in the case of the power-law model.
This result is confirmed by the numerical simulations, where data
points collapse almost completely.
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FIG. 3. Sketch of an arbitrary vertex v with degree k and the
emerging branches with sizes N1 ,N2 , . . . ,Nk. Shaded circles repre-
sent branches where measurement nodes can be found in. Thick
lines symbolize the discovered edges of node v.
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ity that a measurement node can be found in the kth branch
tends to 1. In order to circumvent this effect let us redefine
the network in such a way that every link should be directed
toward the gigantic side of the network. Let q=k−1 denote
the in-degree of nodes in this directed network. It is easy to

see that the discovered in-degree q� will be equal to the
number of branches where measurement nodes can be found
in. We can follow the same procedure as in the case of the
static model. We only need to replace k� and k in Eq. �8� with
the corresponding in-degrees q� and q, and the normalization
constant with P�v�Vd�=1−G0

�in��H1����.
Simulation results are shown for both static and evolving

networks in Fig. 4. Note that we have assumed above that
H1��� is independent of q. This is only an approximation in
the case of the evolving network model. However, H1�� �q�
can be calculated exactly for the DM model, which is shown
with dotted lines �23�.

In conclusion we presented a study of network discovery
processes. We derived analytically the probability of finding
an arbitrary link of the network via shortest-path network
discovery. We considered both static and evolving random
networks with various sampling scenarios. We also demon-
strated an important duality between the discovery of net-
works by shortest paths and the destruction of the same net-
work by edge removal.
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FIG. 4. �Color online� The probability of discovered degree
Pd�q�� and in-degree Pd�q�� as the function of � in P2P sampling
model. The original networks are N=104 node �a� static ER and �b�
evolving BA graphs. Data points are averaged for ten networks with
ten samplings in each realization. Solid lines consist of analytic
solution �8�. Exact solution for the evolving model is shown with
dotted lines for comparison.
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